

THE OFFICE OF THE STATE CHIEF INFORMATION OFFICER
ENTERPRISE TECHNOLOGY STRATEGIES
North Carolina Statewide Technical Architecture

Domain White Paper
Application Architecture Technology Overview

S T A T E W I D E T E C H N I C A L A R C H I T E C T U R E

S T A T E W I D E T E C H N I C A L A R C H I T E C T U R E

Domain White Paper:
Application Architecture
Technology Overview

Initial Release Date: August 1, 2003 Version: 1.0.0
Revision Approved Date: Not Applicable
Date of Last Review: March 11, 2004 Version: 1.0.1
Date Retired:
Architecture Interdependencies:
Reviewer Notes: This is a move without modification from the old format to the new format
as provided herein. A subsequent review and update will occur at a future, as yet to be
determined, date. The ComponentWare section was originally approved 5/6/1997 but went
through an update 9/5/2000. The Accessibility section was included and approved 6/6/2002.
Published August 1, 2003.

Reviewed and updated office title and copyright date. Added a hyperlink for the ETS email –
March 11, 2004.

 2004 State of North Carolina
Office of the State Chief Information Officer

Enterprise Technology Strategies
 PO Box 17209

 Raleigh, North Carolina 27699-7209
 Telephone (919) 981-5510

ets@ncmail.net

All rights reserved. No part of the material protected by this copyright notice may be reproduced or utilized in any
form or by any means, electronic or mechanical, including photocopying, recording or by any informational storage

system without written permission from the copyright owner.

 1

mailto:ets@ncmail.net

S T A T E W I D E T E C H N I C A L A R C H I T E C T U R E

Mission Statement
Application Architecture identifies criteria and techniques associated with the
design of applications that can be easily modified to respond quickly to the state’s
changing business needs.

T he State of North Carolina, like many private enterprises, relies heavily on
computer applications to support its business operations. Because the
state’s business processes change dynamically in response to legislation and
demands from citizens, it is important that computer applications also be

able to change rapidly. Applications capable of being easily and quickly modified are
called “adaptive systems.”

To date, most applications developed by the state are either large and monolithic or
two-tier client/server applications. The existing application inventory reflects not
only the tools available at the time the applications were developed, but also how
system development projects were funded. Applications were originally designed
and funded to perform a specific operation, for a specific agency, and were
developed independently using different languages and tools (See Figure 1). The
ability to communicate with other applications was not an original design
requirement, however, as legislative requirements changed, inter-application
communication was required and custom interfaces were built to address this need.

The existing application architecture adversely impacts the state’s business in three
ways:

• The cost and time associated with modifying existing applications to support
new business requirements.

• The difficulty in integrating applications to share common services
and data.

• The expense of developing, using, and maintaining new applications
because there is little reuse of code between software.

 2

S T A T E W I D E T E C H N I C A L A R C H I T E C T U R E

Data Data

Federal/State
Legislative Initiative or

Program Rule or
Business Need

Federal/State
Legislative Initiative or

Program Rule or
Business Need

ApplicationApplication

Data

Federal/State
Legislative Initiative or

Program Rule or
Business Need

Application

System
Boundary

Organizational
Boundary

Agency A Agency B

Figure 1. Monolithic Applications were developed and operated independently.

Recently, application development tools and technology have evolved to address
these problems. Unlimited options exist for meeting business needs and delivering
information to people when and where they need it.

• Units of code previously duplicated in many applications can be packaged
into components or services and reused by different applications.

• Middleware allows applications to communicate with each other, access data
residing on different platforms, and access the shared services.

• New user interface devices, such as web browsers, pagers, and voice response
units (VRUs), have been introduced.

Implementing these components in an N-tier, client/server application architecture
creates solutions to satisfy the state’s ever-changing business needs.
Here are just a few examples that address issues facing the state today:

• If the code that exists in many applications to calculate an individual’s age
and perform other routine date-related functions were packaged into services

 3

S T A T E W I D E T E C H N I C A L A R C H I T E C T U R E

shared by many applications, the effort required to make the state’s
application portfolio century-compliant would be far less formidable than the
job now facing the state.

• Using middleware, an application issuing fishing licenses could easily access
an application verifying child support payments, even if the applications are
developed and maintained by different agencies.

• When an inmate convicted of certain offenses is released from prison, an
application supporting the prison release process could automatically issue
notices to local authorities and victims. In this way, the application is
proactive; it can “push” information to users rather than requiring users to
“pull” information out of databases when necessary.

There are several ways applications can be designed to maximize business flexibility.

• Logical application boundaries. Applications should be designed along
logical application boundaries to mimic the business processes they support.
For example, suppose the state decided to establish regional textbook
warehouses to supply books to the public schools. When an order is placed
from the textbook requisition application, an order message is sent across the
logical application boundary to the textbook inventory application. The
inventory application would then decide which warehouse should ship the
books, based on proximity to the requester and availability of the requested
textbooks. The requisition system would not even know there are multiple
warehouses. This design allows changes to warehouse locations (e.g., the
addition of a new warehouse or the consolidation of warehouses) to occur
without disruption to the requisition process. With this design, the
application gathering data and sending the requisition “trusts” the inventory
application to route the order to the most appropriate warehouse. (See Figure
2)

• Asynchronous processing. Applications can be designed to take advantage
of new methods of communication, such as asynchronous processing. Just as
voice mail permits communication without requiring both parties to be
available at the same time, asynchronous messaging technologies permit the
same “de-coupling” of applications. Rather than designing an application to
batch requests and send the requests to a second application, the requests can
be placed in a queue and the second application has the flexibility to process
the requests when it is ready (e.g., once a day, once an hour, or as they occur).

 4

S T A T E W I D E T E C H N I C A L A R C H I T E C T U R E

Logical Application Boundary

Textbook
Inventory

Application

Western
Warehouse

Eastern
Warehouse

Central
Warehouse

Request
Message

Textbook
Requisition
Application

Figure 2. Logical Application Boundary

• Using components. Designers can build flexibility, scalability, and
extensibility into applications by using components as application building
blocks, much as autoworkers assemble cars on a production line. Combining
pre-built and pre-tested components with new components accelerates the
design, development, and delivery of new applications. With this approach,
each component addresses a single business rule. If the business rule changes,
only one component must be modified.

Greatest efficiency is achieved by combining new technology (e.g., middleware and
components), applications designed for flexibility, and methodologies fostering a
culture of reuse. But to do this, the developer’s role must change. Changing
business needs do not allow time for artistry or craftsmanship. New roles will
evolve within the state’s IT organizations. Technicians having specialized skills are
needed to:

• Identify, analyze, and understand discrete business processes.

• Design, develop, test, and maintain components.

• Architect applications.

• Optimize inter- and intra-application communications.

Additional recommendations for transitioning to and maximizing the benefits of a
client/server application architecture are discussed in the Recommended Best

 5

S T A T E W I D E T E C H N I C A L A R C H I T E C T U R E

Practices later in this chapter. Also, refer to the Middleware Architecture and
Componentware Architecture chapters for more information about important
aspects of the Statewide Technical Architecture.

Technical Comparisons of Application Architectures
This section discusses application design approaches in a historical sense. It shows
options for implementing a client/server application architecture by comparing
monolithic, two-tier, three-tier, N-tier, and service-oriented applications.
All computer applications -- regardless of what they do and the technology with
which they are implemented -- have three general areas of functionality:

• Business rules: Business rules are the parts of the business process that
computer applications automate.

• Data access: Data access code automates the storing, searching, and retrieving
of data by computer applications.

• Interface: The interface allows applications to communicate with applications
and people.

The ways in which these application functions are assembled determines:

• The flexibility of the applications.

• How quickly they can be modified to support changes in business and
technology.

• How easily they interface with people and with each other.

Monolithic applications

Monolithic applications are applications where the code that implements the
business rules, data access, and user interface are all tightly coupled together as part
of a single, large computer program. A monolithic application must be deployed on
a single platform, usually a mainframe or midrange machine. (See Figure 3)

Monolithic computer applications are deployed across the state. Since the state has
many programs providing services to its citizens, it has many computer applications
supporting those programs. These applications were developed independent of
each other using different combinations of technology. For example, one agency
application may use COBOL, CICS, and VSAM, while another application
supporting the same group of citizens is implemented using COBOL and IMS.

 6

S T A T E W I D E T E C H N I C A L A R C H I T E C T U R E

User
Interface

Code

Data
Access
Code

Data

BR
4

BR
1

BR
5

BR
2

BR
6

BR
3

User
Interface

Data
Access

Application
No Partitioning Deployment

Business
Rules

Mainframe
[User Interface, Business Rules, &

Data Access]

Server
[User Interface,
Business Rules,
& Data Access]

OR

Figure 3. A monolithic application
Monolithic applications have the following drawbacks:

1. It is costly and time consuming to modify them. Changing the code that implements
a business rule risks impacting other code in the application. When any
code in the application changes, the entire application must be retested and
redeployed.

2. It is difficult to integrate applications to share services and data. Most monolithic
applications do not have well-defined interfaces that can be accessed by
other applications.

3. There is little reuse of redundant code between applications, making it more expensive to
build and maintain applications. Many applications contain functionality already
replicated in other applications. Applications are slower and more costly to
build, because existing functionality is reinvented many times. Applications
are more expensive to operate, since the same data must be gathered,
entered, and stored in many places.

4. It is difficult to have applications communicate with other applications. Most existing
applications do not have the ability to communicate with other applications
within an agency and with applications in other agencies.

 7

S T A T E W I D E T E C H N I C A L A R C H I T E C T U R E

5. Monolithic applications can be accessed using only a single user interface. Most can only
be accessed via 3270 terminals. Having a single user interface is a limitation
when application services need to be accessed from other user interfaces
such as web browsers or the telephone (via VRUs).

6. There is no flexibility in where the applications can be deployed. Applications must be
deployed on a single machine, usually a mainframe, to get enough
processing capacity to process all parts of the application: the user interface,
the business rules, and the data access code.

Two-tier client/server applications
Like many organizations, some state agencies attempted to overcome the business
impact of monolithic applications by adopting client/server technology for new
applications. The terms “client/server”, “client”, and “server” are often
misunderstood. Many believe that “client/server” means an application with a
graphical user interface and a relational database (neither is necessarily true). In fact,
client/server applications are constructed of software “clients” that, in order to
perform their required function, must request assistance -- “service” -- from other
software components, known as “servers.” Middleware provides communication
between the client and server. Refer to the Middleware Architecture chapter for
more information about how communication middleware is used in client/server
applications.

These early client/server applications used architecture dictated by the tools
employed in their construction. As a result, most of these applications use a two-tier
client/server architecture. The “tiers” of client/server applications refer to the number
of executable components into which the application is partitioned, not to the
number of platforms where the executables are deployed. Sometimes the tiers into
which the application is partitioned is called “logical partitioning”, and the number
of physical platforms on which it is deployed is called “physical partitioning.”

In a two-tier client/server architecture, application functionality is partitioned into
two executable parts, or “tiers.” One tier contains both the code that implements a
graphical user interface (GUI) and the code that implements the business rules.
This tier executes on PCs or workstations and requests data from the second
application tier, which usually executes on the machine where the application’s data
is stored.

This model is referred to as two-tier, fat client, because the application is partitioned
into two tiers of executable code, and most of the application’s code is contained in
the tier executing on the workstations, known as the “fat client.” (See Figure 4)
Since business rules are tightly integrated with user interface code, the code
implementing the business rules must be deployed on the same platform(s) as the
user interface, and the entire workstation-resident portion of the application must
be redeployed when either a business rule or the user interface changes. When the

 8

S T A T E W I D E T E C H N I C A L A R C H I T E C T U R E

number of workstations used is high or geographically dispersed, the maintenance
costs for two-tier, fat client applications escalate quickly.

User
Interface

Code

Data
Access
Code

Data

BR
4

BR
1

BR
5

BR
2

BR
6

BR
3

Workstation(s)
[User Interface &
Business Rules

Database Server
[Data Access]

Tier 1:
User

Interface
&

Business
Rules

Tier 2:
Data

Access

Middleware

Application Tiers
Logical Partitioning

Deployment
Physical Partitioning

Figure 4. A two-tier, fat client application

Other client/server applications are partitioned into two tiers, but much of the code
that implements the business rules is tightly integrated with the data access code,
sometimes in the form of database stored procedures and triggers. This model is
called two-tier, fat server. (See Figure 5) Two-tier, fat server applications are often
implemented as mainframe applications that have web browsers for the user
interfaces. This approach is actually a good first step in migrating to a three-tier or
N-tier application architecture. Users can enjoy the ease-of-use provided by the
web’s graphical interface while developers work to update other parts of the
application.

 9

S T A T E W I D E T E C H N I C A L A R C H I T E C T U R E

User
Interface

Code

Data
Access
Code

Data

BR
4

BR
1

BR
5

BR
2

BR
6

BR
3

Workstation(s)
[User Interface]

Database Server
[Business Rules &

Data Access]

Tier 1:
User

Interface

Tier 2:
Business

Rules
&

Data
Access

Middleware

Application Tiers
Logical Partitioning

Deployment
Physical Partitioning

Figure 5. A two-tier, fat server application

Since the business rules in two-tier applications are tightly integrated with either the
user interface code or the data access code, two-tier client/server applications have
the following drawbacks:

1. They are difficult and expensive to modify when business requirements change. Business
rules are mostly monolithic. Changing any business rule impacts the rest of
the application.

2. There is little reuse of redundant code. It is difficult to reuse any business rules
elsewhere (e.g., in other computer applications that require similar services or
in batch processing that is part of the same application).

3. There is little flexibility in selecting the platforms where the application will be deployed. In
two-tier, fat client applications, the business rules must execute on the same
platform as the user interface, because the code they are implemented in is
tightly coupled with the interface. Likewise, in two-tier, fat server
applications, the business rules can only execute on the machine that hosts

 10

S T A T E W I D E T E C H N I C A L A R C H I T E C T U R E

the database, because they are implemented either with the database or inside
the database.

4. They can only be accessed by users with PCs running a graphical user interface. Since the
user interface is graphical, and requires a workstation to run, users with other
I/O devices are excluded from using the application. These devices include
existing non-graphics terminals (e.g., UNIX terminals or 3270 terminals),
telephone interfaces via VRUs, and web browsers.

5. They are more difficult to manage than monolithic applications. Any change to either
business rules or GUI means that the entire workstation-resident portion of
the application must be redistributed and installed on every workstation that
uses the application. Frequent software distribution can be time-consuming
and logistically difficult to manage.

Three-tier client/server applications
Some client/server applications are partitioned into three executable tiers of code:
user interface, business rules, and data access. Three-tier client/server means that
the application’s code is partitioned into three tiers. It does not imply that the three
tiers execute on three different platforms. Often, the business rule tier is deployed
on the same platform as the data access tier; or on the same platform(s) as the user
interface. There is more flexibility in where application executables can be
deployed, and may be considered a good transition step from monolithic or two-
tier applications.
Three-tier client/server applications still suffer from some of the limitations of two-
tier and monolithic applications. Since the business rules are monolithic:

• Changes to any business rule require re-linking, retesting, and redeploying the
entire executable containing all business rules.

• There is no flexibility in where any given business rule can be deployed, since
all business rules are tightly coupled in the monolithic tier and, therefore,
must be deployed on the same platform.

Figure 6 illustrates a three-tier client/server application. Notice that in the
deployment, or physical partitioning, of the application the business rules are
separate from both the user interface and the data access code. Business rules are
deployed on their own server or on the same server as the database. Although it is
also possible to deploy the business rules on the same platform as the user interface
in a three-tier application architecture, it is not recommended because of the
software management problems which occur with many or dispersed user
workstations are used.

 11

S T A T E W I D E T E C H N I C A L A R C H I T E C T U R E

User
Interface

Code

Data
Access
Code

Data

BR
4

BR
1

BR
5

BR
2

BR
6

BR
3

Workstation(s)
[User Interface]

Application Server
[Business Rules]

Tier 1:
User

Interface

Tier 2:
Business

Rules

Database Server
[Data Access]

Tier 3:
Data

Access

Middleware

Middleware

Application Tiers
Logical Partitioning

Deployment Alternatives
Physical Partitioning

Workstation(s)
[User Interface]

Server
[Application &
Data Access]

Option 1 Option 2

Figure 6. A three-tier client/server application

N-tier client/server applications
Many of the problems inherent in the state’s existing application architecture of
monolithic and two-tier applications can be overcome by implementing
applications in an N-tier architecture. In an N-tier architecture, applications are
partitioned into discrete units of functionality called “services”. Each service
implements a small set of related business rules or function points. “Business rules”
support the processes the business follows. Business rules define what must be
done and how it must be done.
Examples of business rules include:

• Issue a check IF (a) an invoice has been presented AND (b) the invoice is for
work for which a purchase order was issued AND (c) the work has been
performed AND (d) there is enough money in the bank to cover the check.

 12

S T A T E W I D E T E C H N I C A L A R C H I T E C T U R E

• This student is eligible for early graduation IF (a) she or he has completed the
required work AND (b) she or he has achieved a grade point average of 3.0
AND (c) it is not yet time for her/him to graduate AND (d) she or he is at
least 16 years old.

Business rules are processes followed when business events occur (i.e., business
events are triggers for business rules). If business rules define what to do, business
events define why it should be done. The following examples of business events
might invoke the associated business rule:

• A person applying for public assistance triggers the business rules for “Determine
eligibility for public assistance.”

• A person applying for a corporate charter triggers the business rules for “Process
application for incorporation.”

• A motorist driving erratically triggers the business rules for “Traffic stop.”

• It’s April 16 triggers the business rule for “Late tax return.”

When a business rule must be modified to support changing business requirements,
only the service that implements that business rule needs to be modified; the
remainder of the application can remain intact. There is greater application
adaptability for agencies. In the application illustrated in Figure 7, each business
rule is implemented as a discrete executable (a “service”) that can be requested by
any client.

Since the business rules are implemented as separate executables, any combination
of business rules may run on any combination of platforms. There is flexibility in
selecting the platforms where application components can be deployed. As
transaction loads, response time, and throughput change, any individual service can
be moved from the platform on which it executes to another, more powerful
platform. Application deployment is flexible and scaleable to accommodate greater
transaction volumes.

Since business rules are implemented discretely, instead of tightly integrated with
the graphical user interface, changes to business rules do not always require updates
of code on the workstations accessing the application. It is easier to manage the
deployed application.

Since business rules are implemented in discrete services, the same business rule
can be invoked from users accessing the application from a GUI, from character
terminals, or from web browsers. They can also be accessed by telephone from
VRUs or by batch jobs. A separate interface tier provides programmer productivity
and consistency of application behavior.

 13

S T A T E W I D E T E C H N I C A L A R C H I T E C T U R E

Terminal
User

Interface
Code

Data
Access
Code

Data

BR
4

BR
1

BR
5

BR
2

BR
6

BR
3

Data Data

User Interface
Tier(s)

Business Rules
Tier(s)

Data Access
Tier(s)

Other
User

Interface
Code

Graphical
User

Interface
Code

Middleware

Middleware

Application Tiers
Logical Partitioning

Figure 7. An N-tier client/server application

N-tier applications have the following advantages:

1. It is easy to modify them to support changes in business rules.

2. There is less risk modifying the code that implements any given business rule.

3. N-tier applications are highly scaleable.

4. An N-tier architecture offers the best performance of any client/server
application architecture.

5. They can support any combination of user interfaces: character, graphical,
web browser, telephones, and others.

6. They offer the highest potential for code reuse and sharing.

Service-Oriented Application Architecture
The maximum benefits of an N-tier architecture are realized when many N-tier
applications are deployed across the state, sharing common software services that
are accessible from any user interface. This is called a “service-oriented
architecture”. In this environment, any application can access any service, provided
the application has the proper security permissions. In a service-oriented
application architecture:

 14

S T A T E W I D E T E C H N I C A L A R C H I T E C T U R E

• Some services are shared by applications from multiple agencies.

• Others are shared by applications within a single agency.

• The rest are used by a single application.

The greatest strength of a service-oriented architecture is the potential for
repeatable rapid development of new applications. Figure 8 illustrates N-tier
applications in a service-oriented architecture.

Statewide
Middleware

Compute Age

 Login Security

other services

Call "Compute
Age"

Common
(shared)
services

Telephone

Multimedia PC

Application A

Call "Compute
Age"

Telephone

Multimedia PC

Application B

Figure 8. N-tier applications in a service-oriented architecture.

Application Technology Components
The technology components of applications are discussed below.

Application
Applications are the software that automates business processes. Regardless of what
they do and the technology with which they are implemented, all applications have
three general areas, known as “tiers”, of functionality:

 15

S T A T E W I D E T E C H N I C A L A R C H I T E C T U R E

• Business rules. Automates business processes using computer applications.
As the business needs of agencies change, the business rules in the
applications that support the agencies must be changed.

• Data access. Automates the storage, search for, and retrieval of data by
computer applications. In N-tier applications, changes in business rules do
not usually require changes to the code that accesses data, but occasionally,
they do.

• Interface. Allows applications to communicate with other applications and
with people. In N-tier applications, changes in business rules do not usually
require changes in interface code, but sometimes, interfaces need to be
updated when associated business rules have not changed (e.g., when changes
occur in another computer system that interfaces with an application, or
when users need a graphical user interface instead of a character-based
interface).

Since applications interface with people, the user interface receives the most attention,
but other interfaces are also important. Traditionally, people interfaced with
computer applications using character terminals (e.g., 3270) or graphical user
interfaces (e.g., Microsoft Windows). Recently new interfaces such as telephones
(via VRUs), web browsers, and wireless devices have been introduced.

Middleware
Middleware is software that supports communications between the functional tiers
of an application, between two or more different applications, and between
applications and shared services. The role of middleware is to insulate application
developers from having to understand the complexities of the computing
environment and prevent them from having to hard code application interfaces.
Refer to the Middleware Architecture chapter for more information.

Components
Components are program modules supporting a single business function or rule.
Components shared by multiple applications must be designed for portability
across platforms. Components used only within an application system can be
developed in any supported language, with any development tool appropriate for
the particular tier where they will be deployed. Refer to the Componentware
Architecture chapter for more information about components.

Application Development Tools
The Application Architecture is independent of any specific technology. Its
components, the interface, business rules, and data access code, can be
implemented with any development tool in any language on any platform supporting the
business needs of the application. Regardless of the tools selected, it is important
that each tier be designed to be portable across platforms.
There are three approaches for selecting tools to develop client/server applications:

 16

S T A T E W I D E T E C H N I C A L A R C H I T E C T U R E

1. Best of breed. Separate, specialized tools are used for each tier of an
application. Middleware must be used to support communications between
the different tiers.

2. Front end/back end. Two different tools are used: a specialized user
interface development tool and an integrated tool set that also provides
middleware for the business rule and data access tiers. Middleware must be
used to support communications between the user interface and other two
tiers.

3. Integrated. Integrated tool sets, or CASE tools, are used that generate code
for all tiers of the application. These tools provide the middleware necessary
to support communications between all tiers of the application.

Table 1 gives examples of tools used with each of these development approaches.

Tier/
Approach

Best of breed Front-end/
Back-end

Integrated

User interface • Centura:
SQLWindows

• Microsoft: Visual
Basic

• Sybase:
PowerBuilder

• Centura:
SQLWindows

• Microsoft: Visual
Basic

• Sybase:
PowerBuilder

• Antares:
HURON

• Bachman:
Ellipse

• Dynasty:
Dynasty

• Forte: Forte
• Intersolv: APS
• Seer: HPS

Data access • Informix
• Oracle
• Sybase

• Magna Software:
Magna X

• Open
Environment:
Encompass

• Texas
Instruments:
IEF

Business rules • COBOL
• C
• Traditional

program generator

Table 1. Development tools for various approaches

With the N-tier and service-oriented application architectures, two additional types
of tools are required:

• Repositories, or libraries, to keep track of business rules that have been
automated by components (see the Componentware Architecture chapter)

• Software management tools that provide version control, configuration
management, and software distribution services (see the Systems
Management chapter).

 17

S T A T E W I D E T E C H N I C A L A R C H I T E C T U R E

There is no “one size fits all” tool set that addresses the needs of all applications or
that can be implemented on a statewide basis. The infrastructure of the Statewide
Technical Architecture provides flexibility and choices for application development.
Therefore, the selection of application development tools and intra-application
middleware products is up to individual agencies -- as long as they support external
calls to the state’s middleware broker for inter-application communications and
access to shared services (see the Middleware Architecture chapter).

Designing Manageable Applications

The state depends on the computer applications that support its business. If the
application that supports an area of business were to go down or become
unavailable, the state would be unable to deliver the services mandated by a
program. For example:

• If the criminal history application becomes unavailable, law enforcement
officers will be unable to determine during a traffic stop whether a driver
should be considered dangerous.

• If the welfare eligibility information system becomes unavailable, the state
will not be able to identify citizens needing public assistance.

• If the drivers license application becomes unavailable, the state would be
unable to issue licenses to new drivers.

Due to the state’s dependency on computer applications, applications must be
managed as carefully as any other business-support infrastructure. Application
management is a necessity, not an option. Application management requirements are as
important to the enterprise as an application’s functional requirements. Therefore,
management requirements for an application should be documented during the
requirements phase of the project.

Managing distributed applications (i.e., client/server applications) is more difficult
than managing monolithic applications, because there are more pieces involved.
The application itself has more components, and it has dependencies on more
infrastructure components (e.g., networks, servers, workstations, software
components, and databases). A client/server application may become unavailable if
any component of the application fails or if any resource the application depends
on is unavailable.

A client/server application will fail, for example:

• If one of its software components (e.g., a module that performs business rule
processing) terminates abnormally.

• If the network connection between a client process and a server process
becomes unavailable.

 18

S T A T E W I D E T E C H N I C A L A R C H I T E C T U R E

• If a database table the application must update is full.

• If a shared software service (e.g., validate social security number) cannot be
accessed.

The application must be managed as a whole. This requires managing each
component of the application and the infrastructure components it depends on.
The ability to detect the causes of application failures, like those highlighted above,
allows operations staff to respond quickly to restore service and to minimize the
impact an application outage has on the state’s business.

This section deals with designing applications to facilitate their management in
production. This includes starting and stopping applications and their components;
reconfiguring components; monitoring availability, errors, and performance; and
controlling running applications.
Most management tools for the distributed environment deal with the
infrastructure that distributed applications require -- machines, networks, routers,
databases -- but not with the applications themselves.

Network and system management (NSM) tools can be used to manage applications
as well as infrastructure components, but the applications must be instrumented to
facilitate management. Instrumentation is source code that is added to each
component of the application to facilitate its management. Instrumentation allows
applications to provide feedback to the NSM tools and respond to commands
issued by system administrators using the NSM tools.

When instrumenting applications, the costs of application management must be
balanced with the business need for the application. Application management has
costs associated in design, development, maintenance, and monitoring. Managing
applications consumes system resources and impacts the performance of the
application itself and other applications that share the same resources (e.g.,
platforms and networks). The cost of application management is an investment that supports
the state’s ability to continue to do business.
The management functions of applications should be compatible with NSM tools
deployed to manage applications. SIPS is currently implementing a Simple Network
Management Protocol (SNMP) compliant tool as the statewide NSM tool. To help
agency developers instrument applications correctly, SIPS will specify the types of
information applications must provide to be managed, as well as the types of
commands to which applications must respond. All distributed applications --
client/server, object-oriented, and web applications -- must support the state’s
application management requirements.

 19

S T A T E W I D E T E C H N I C A L A R C H I T E C T U R E

Application
Components

User
Interface

Business
Rules

Data
Access

Workstation

Application Server

Database Server

Database

WAN

Local Area
Network

Infrastructure Components

Figure 9. A distributed application in its operational environment.

Manageable Application Technology Components
Application management requires the following technology components:
Instrumented applications
Instrumentation in applications is code that provides information to or processes
commands from the management environment. Applications, and each component
within an application, should have the capability to:
• Report:

• Events (e.g., “I just serviced a request”)
• Performance statistics (e.g., “it took .3 seconds to service a request”)
• Errors (e.g., “I was unable to service a request because it contained an

invalid parameter”)
• Conditions (e.g., “there are 5 more requests in the queue”)

• Receive and process commands, such as:

 20

S T A T E W I D E T E C H N I C A L A R C H I T E C T U R E

• Shut down the component
• Re-process the configuration file
• Begin using a different database.

Consistency in application instrumentation is easiest when all development teams
use the same code templates for management services. Templates should include
the basic instrumentation, and places for application teams to add the functional
code required to support the application’s mission (business rules).

/*** code template for servers ***/
/*** includes management functions ***/
Service_Name()
{

call startup();
call configure_service();

while (get_request() not equal to 0)
{

/******************************
/* business rule processing goes here
/*
/*
/******************************/
send_reply();

}
call shutdown();

}

startup()
{
~~~ code for starting service ~~~
}

configure_service()
{
~~~ code for configuring service ~~~
}

trace_on()
{
~~~ code to turn tracing on ~~~
}

trace_off()
{
~~~ code to turn tracing off ~~~
}

shutdown()
{
~~~ code to gracefully exit ~~~
}

/***** end module ******/

 
Figure 10. A code template for services should include application management routines. 

 21



S T A T E W I D E  T E C H N I C A L  A R C H I T E C T U R E  

Agents 

Agents are programs that collect status from applications, filter it, and report it to 
the system management framework. Please refer to the Systems Management 
Architecture for more information regarding agents. 

 

Network and System Management (NSM) framework 

The NSM framework monitors networks, systems, and applications by identifying 
alarms forwarded by agents. It alerts operations staff to the condition, so they can 
take corrective action. Please refer to the Systems Management Architecture for 
more information regarding NSM tools. 
 
 
Management Information Base (MIB) 

A MIB is a database that contains information about the application being 
managed. It includes dependencies on systems, other applications, databases, 
software components, etc. Application developers must supply some of the 
information for the MIB. Please refer to the Systems Management Architecture for 
more information regarding MIBs. 
 
 
Management Protocols 

NSM tools, agents, and the applications they manage must communicate with each 
other in a common language, or protocol. Please refer to the Systems Management 
Architecture for more information regarding management protocols. 
 

Development Tools 

Some application development tools support only certain application management 
protocols. If an application development team chooses to use a tool that includes 
support for an NSM tool, it should support the NSM tool being used statewide. 
Tools that support application management will make the developers job easier, 
and will help ensure that the application can be managed by the state’s NSM tool. 

 
ComponentWare  
Componentware Architecture enables efficient reuse of existing application assets, 
faster deployment of new applications, and improved responsiveness to changing 
business needs. Reusable software components are the building blocks that make a 
system able to respond quickly to change. 

 22



S T A T E W I D E  T E C H N I C A L  A R C H I T E C T U R E  

As described earlier, traditional application programming techniques employed 
within the State of North Carolina resulted in an inventory of monolithic 
applications. Monolithic applications perform comprehensive business functions 
and operate independently from other applications. Making changes to a monolithic 
system is a major undertaking because changes in one area often cause problems in 
other areas. 

Monolithic applications often incorporate the use of function calls and subroutines 
in an effort to divide the application into smaller, more manageable parts. This type 
of application is called a “modular application.” Modular applications are easier to 
maintain than non-modular, but they still remain tightly integrated within a single 
application system. Though state-of-the-art at the time, modular development 
techniques have evolved into other techniques. These other techniques greatly 
enhance the efficiency of the application development cycle and minimize 
redundancy by incorporating shareable and reusable components. Sharing and reuse 
of components are the prime objectives of the Componentware Architecture. 

Opportunities to share and reuse components exist today. There are many business 
functions that are common from agency to agency and are replicated in the 
applications that support them. For example, citizens requesting state services are 
usually asked a set of common questions: What is your name? What is your 
address? What is your phone number? What is your date of birth? etc. Once the 
data is collected, computer applications process the information. Across the state, 
these same functions are performed over and over in many different applications. 

Figure 5-1 illustrates two application programs containing the code to perform the 
same function, “Compute Age”. If there is a change to the “Compute Age” 
function, it must be located and changed in every application. For example, if dates 
are stored in the format YY/MM/DD and need to be changed to 
YYYY/MM/DD, then every program with the “Compute Age” function must be 
located, updated, relinked, recompiled, and retested. 

Alternatively, if “Compute Age” were isolated as a common, reusable component, 
the impact of this change would be significantly less. When reusable and shareable 
components are used, individual applications contain application-specific logic, but 
call a common “Compute Age” component. If the date requirements change from 
YY/MM/DD to YYYY/MM/DD, the common “Compute Age” component is 
changed, tested and replaced. (See Figure 11) There is no need to search each 
application for a “Compute Age” routine. Identifying common, reusable 
components provides significant benefits for maintaining application code. 

 23



S T A T E W I D E  T E C H N I C A L  A R C H I T E C T U R E  

 

Figure 11. No sharing of common code between applications. 
 

The benefits of sharing and reusing common components include: 

• Productivity gain for the developers. Pre-built and pre-tested reusable 
components, ready for assembly by a developer, reduce the effort and time 
required to develop new or maintain existing applications. 

• Consistency and accuracy of processing. Consistency and accuracy are 
achieved by having only one component responsible for a particular function. 
By eliminating the duplication of processes, the possibility of a process being 
performed more than one way is eliminated, thus reducing the potential for 
errors. 

• Simplified testing. Once a component has been thoroughly tested, there is no 
need for further testing of that component when it is integrated with other 
components to form an application.  

To achieve the benefits of sharing and reusing components, a successful reuse 
strategy must include: 

• A reuse methodology consistently applied by application developers 

• A component review board whose function enables the reuse program by 
reviewing projects and assisting with component reuse. 

• A technique for identifying reusable components, also known as 
“harvesting.” Harvesting involves the examination of legacy applications for 

 24



S T A T E W I D E  T E C H N I C A L  A R C H I T E C T U R E  

the purpose of identifying functions that can be isolated into standalone 
program modules (i.e., components). 

• A “wrappering” or “encapsulation” technique. Legacy applications can be 
formed into components by using a technology called “wrappering” or 
“encapsulation”. Code is implemented that “wraps” an API around a legacy 
service. A wrapper is used with legacy applications for the purpose of 
implementing reusable components. 

• Documentation for each component that includes a well-defined set of input 
and output parameters for each interface option provided. 

• A library, or repository, of information about reusable components. 

Statewide
Middleware

Compute Age

 Login Security

other services

Call "Compute
Age"

Common
(shared)
services

Telephone

Multimedia PC

Application A

Call "Compute
Age"

Telephone

Multimedia PC

Application B

 
Figure 12. Sharing a common component. 

Integrated error and exception handling capabilities that enables each component 
to operate independently from other components and applications. 

 

Reuse Methodology 
A successful implementation of an N-tier, reusable component service-oriented 
architecture is not solely dependent on the ability to develop reusable components. 

 25



S T A T E W I D E  T E C H N I C A L  A R C H I T E C T U R E  

Success also depends on the ability to provide the tools and management of the 
components for reuse. 

As discussed in the Data Architecture chapter, the state benefits by having a 
federated data model where data is defined consistently and shared. Federated data 
is data available for use within a single agency, between multiple governmental 
organizations, and across the state. Application code maintaining federated data 
should also be reused and shared. If more than one program updates a piece of 
data, then there is the risk of one program performing the update slightly different 
from another program. If multiple programs or applications update the same data, 
there is a risk to the integrity of that data. 

The development of a Componentware Architecture would best be implemented 
incrementally over time through ongoing projects. The key is to put in place a solid 
strategy. If a Componentware Architecture is not explicitly designed and actively 
managed, the result will be a more difficult development environment than is 
currently in place in the state. The key elements of a reuse program are: 

• Inventory. 

• Catalog. 

• Reuse administrator and facilitator. 

• Methodology. 

• Design standards and principles. 

• Measurement. 

• Quality assurance. 

• Performance incentives. 

A reuse program should be established to enable the reuse methodology statewide. 
A reuse methodology should be incorporated into the system development life 
cycle. 

Componentware Architecture recommends the forming of a component review 
board that reviews projects and assists with the harvesting and implementation of 
components. The component review board should be comprised of key business 
users from across the enterprise. The focus of the review board is to enable the 
reuse program. In order to ensure a successful reuse program, the right people have 
to be involved with the knowledge and the authority to negotiate the definitions of 
reusable components. 

 

 26



S T A T E W I D E  T E C H N I C A L  A R C H I T E C T U R E  

Techniques for Reusing Components 
The notion of reuse is not new. Application developers have been reusing code for 
many years. The Componentware Architecture builds upon familiar paradigms. 
Examples of code reuse are: 

Including code from one program into another. There are two variations for 
including code: (1) copying the source code from one program directly into the 
source code of another; or (2) using “include” files or copybooks. The drawback 
with these methods of reuse is the expense of adapting to and maintaining changes. 
If a piece of copied code implements the logic necessary to carry out a particular 
business rule, then every time a business rule changes the change has to be 
replicated everywhere that code exists. After the change is made, each program 
must then be retested. Even if the rule is implemented using an “include” file or 
copybook, all programs containing that “include” file or copybook must be 
recompiled and retested. 

1. Linking programs with libraries of compiled program object modules. 
Linking programs is accomplished 1 of 2 ways: using the link facility provided 
with the computer operating system at compile time; or by using Dynamic 
Link Libraries (DLL) at runtime. This method of reuse is better than copying 
the code from one program to another because the business logic only exists 
once. However, if a module implementing the business rule changes then any 
programs linked with that module need to be identified, relinked, and 
retested. 

2. Calling a service that performs the desired task. Programming function 
libraries (and operating system service libraries) employ this method of reuse. 
For example, most programming languages supply mathematical function 
libraries so programmers do not have to write mathematical functions (e.g., a 
square root function). Similarly, operating systems supply calls for system 
service functions (e.g., file management). The use of common components is 
an extension of this concept for business functions. 

Calling a service that performs the desired task is preferred method of code reuse 
and is the recommended technique for using components in the Componentware 
Architecture. This method supports the N-tiered design recommended by the 
Application Architecture. 
 
Types of Services provided by Components 
Reusable components can classified into different types, as illustrated in Figure 3: 

• Application services. These components perform business rules (e.g., “Compute 
Age”), provide access to the business data (e.g., “Get Citizen Record”), or 
communicate with other systems using application program interfaces (e.g., 
“Reorder Books”). Application services that handle data should be the only 
method by with data is accessed. 

 27



S T A T E W I D E  T E C H N I C A L  A R C H I T E C T U R E  

• User interface services. User interfaces facilitate interaction between people and 
application systems. Occasionally, changes in business rules require changes 
in interface code. More often, new interfaces need to be added to an 
application system. For example, a voice response unit (VRU) or web 
browser may be added to an application originally built with 3270 terminal 
interface. User interface services enable the applications to be accessed by any 
type of user interface. The objective is to design the system in such a manner 
that it won’t matter what user interface is being used to access an application, 
because the flow of information will still be the same. Typical user interfaces 
include: 

• Graphical user interfaces (i.e., GUI). 

• Non-graphics terminals (e.g., UNIX terminals or 3270 terminals). 

• Web browsers. 

• Point of sale devices (e.g., cash registers). 

• Telephone interfaces via VRUs. 

• Support services. Services that typically provide operating system type functions, 
such as printing, faxing, and imaging, that are typically provided by purchased 
packages. If purchased they should easily integrate into an N-tier 
environment. 

• Core services. These components provide basic application infrastructure 
services such as security, naming, and directory services. 

The importance of the classification of components into application, support, core, 
and user interface services is that each has their own special benefits. Support and 
core services are typically purchased packages integrated with the rest of the 
operating system. These services should not be a concern for application 
developers; instead, they should exist and be used as integral components of the 
system architecture just as a keyboard is an integral component of a PC. The goal is 
to focus the efforts of the application developers on creating new business 
application services that can be shared with other applications in the state. 

 28



S T A T E W I D E  T E C H N I C A L  A R C H I T E C T U R E  

Examples of Application
Services

Examples of Core
Services

Examples of Support
Services

D
ire

ct
or

y

N
am

in
g

Se
cu

rit
y

Pr
in

t

Se
nd

 F
ax

Im
ag

in
g

Bu
si

ne
ss

 R
ul

es

D
at

a 
Ac

ce
ss

Ap
pl

ic
at

io
n

In
te

rfa
ce

s

Telephone - VRU Desktop System - GUIMultimedia PC - Web

Service Broker

Computer
Application

Graphical
User Interface

Telephone
User Interface

Character
User Interface

Web Browser
User Interface

Credit Card Reader

Card Reader
User Interface

3270 Terminal

 
 

Figure 13. Various types of components. 
 

Object-oriented Components 
Object-oriented components encapsulate both the business logic and the data 
accessed by the business logic. They have the potential to become intelligent, self-
managing entities, allowing for more simplified management.  

Properly wrapped, object-oriented components can be accessed by both object-
oriented and traditional applications. Likewise, non-object oriented components 
can be accessed by both object-oriented and non-object oriented applications. 

There are several reasons why objects are discussed here as “potential”, but not 
included in the current migration strategy: 

1. Object technology radically alters the way software is developed. Many of the 
same benefits can be achieved using traditional technology familiar to 
development staff with legacy skills. Non-object-oriented components can: 

• Plug-and-play across the network. 

• Run on different platforms. 

 29



S T A T E W I D E  T E C H N I C A L  A R C H I T E C T U R E  

• Coexist with legacy applications and object-oriented applications. 

• Protect data without encapsulation by providing the only means of 
accessing the data. 

2. Objects are still an emerging technology. Standards and techniques are still 
evolving. There are currently two different object standards: 

• The Common Object Request Broker Architecture (CORBA). This is the 
model promoted by the Object Management Group (OMG). As a 
consortium of corporations, the OMG was founded specifically to create 
distributed object industry standards. The membership list is over 700 
members. 

  Components developed with the CORBA standard are language neutral 
so components written in one language can interoperate with 
components in other languages. Since CORBA supports inheritance, 
components developed with this standard are very reusable and can be 
deployed on virtually every computing platform in the industry. 

• The Object Linking and Embedding/Distributed Component Object 
Model (OLE/DCOM). These objects are based on a defacto standard 
developed by Microsoft Corporation. OLE/DCOM specifies intra-
application and inter-application communication interfaces 
between OLE-compliant components. OLE has been an accepted 
defacto standard for objects close to the end-user for some time.  

  DCOM has drawbacks, though. First, the DCOM standard 
supports encapsulation but does not support inheritance. Also, 
objects developed using the OLE/DCOM are limited to the 
WindowsTM family of operating systems while CORBA objects offer 
broader platform support. CORBA objects can be wrapped with 
code that will allow them to interface with OLE/DCOM objects.  

Since most of the gains of object technology can be obtained with a service-
oriented architecture, the migration to object-oriented programming should be 
delayed by state application developers until the marketplace matures, the necessary 
skills have been acquired, and a clear technical standard emerges. At the same time, 
agencies should not reject purchasing applications developed by organizations 
experienced in object-oriented technology, since a vendor’s object model will not 
negatively impact the state. 

ComponentWare Technology Components 
The statewide Componentware Architecture requires the following technology 
components to be successful. 

Components 
Components are program modules providing a complete package of business 
functionality. Shared components must be designed for portability across platforms. 

 30



S T A T E W I D E  T E C H N I C A L  A R C H I T E C T U R E  

Components within an application system can be developed in any supported 
language, with any development tool appropriate for the particular tier where they 
are deployed. 

 

Application Program Interface (API) 

Each component developed to be reused must have a well-documented Application 
Programming Interface (API). The API defines:  

• The parameters that must be passed to the component, including required 
and optional parameters. 

• The output to be returned and its output.  
For example, if a “Compute Age” component computes an age (in years) based on 
a birth date, its API might require a birth date, passed in a string, in 
MM/DD/YYYY format. The “Compute Age” component then returns an integer 
in the range of 0 - 150. 

The API must be available to programmers who use a component. 

Interface Definition Language (IDL) 

Application programs must be able to pass parameters to and receive results from 
components. To accomplish this, application developers must understand the API 
of the components. 

Interface Definition Language (IDL) provides a means for component developers 
to describe a component’s API. The IDL source code is compiled and made 
available to programmers needing to use the component. By including in an 
application the compiled IDL description of a component’s API, the application 
can interact successfully with the component. 

Note that a component can be changed without requiring modifications to the 
applications that use it, as long as the component API does not change. For 
example, if the “Compute Age” component is changed to accelerate the age 
calculation function, the programs calling “Compute Age” do not have to be 
modified. “Compute Age” still receives a string containing a date in 
MM/DD/YYYY format and will return an integer in the range of 0 - 150. 

Repository 

A repository is a library assisting programmers in finding components that can be 
used to construct applications. It contains information about the components 
available to be reused in the application development process. For example, the 
repository might contain an English language description of what a component 
does, the API required to use it, and the IDL description of the API. 

 31



S T A T E W I D E  T E C H N I C A L  A R C H I T E C T U R E  

There are two choices for developing a component repository. It can be purchased 
from a vendor and configured as a reusable component repository, or it can be 
custom developed. 
Harvesting legacy applications for candidate components can initially populate a 
component repository. Legacy systems are a good place to start for populating the 
component repository because they contain all the current business rules. The 
problem with building components from legacy systems is that most legacy 
applications are not designed for component use and may require major 
modifications for component extraction. 

 

Accessibility 
Accessibility Architecture provides standards for accessing information by persons 
who must receive it in a form that is different from the manner in which it is 
normally presented. The Chapter provides methods of designing systems so that 
the largest number of people can utilize the information contained therein. 
Examples include people with sight, hearing, mobility, or cognitive impairments. 
The subject matter also addresses low-bandwidth network connections; along with 
legacy, intermediary and "thin" clients, which have limited display or functional 
capabilities. 

The purpose of this Chapter is to provide a set of recommended guidelines for 
State developers, designers, procurement officers and commercial suppliers of 
electronic and information technology and services that will result in access to and 
use of the technology and information by all individuals, especially those with 
disabilities. This Chapter represents minimally acceptable standards. All entities 
involved in the design, production, and procurement process of relevant electronic 
and information technology are strongly encouraged to go beyond these standards 
to maximize the accessibility and usability of products by all individuals. 

Electronic and Information technology (E&IT) used by the State government shall 
be accessible to and usable by all individuals, including those with disabilities. Being 
accessible and usable by people includes being able to perform all the regular 
operating functions of the E&IT including input and control functions, operation 
of any mechanical mechanisms, and access to information displayed in visual and 
auditory form. It also includes the ability to work with the assistive technologies 
used to access E&IT and should not interfere with the assistive technologies used 
on a daily basis by people with disabilities. Documentation and services associated 
with E&IT shall also be accessible and usable. 

These architectural guidelines apply to a full range of E&IT including those used 
for communication, duplication, computing, storage, presentation, control, 
transport and production.  

 32



S T A T E W I D E  T E C H N I C A L  A R C H I T E C T U R E  

Usability of information technology becomes a serious issue for Americans with 
disabilities when they are excluded from the e-commerce and e-government due to 
the inaccessible design of information technology. Those who "can" and "cannot" 
are finding a growing number of access barriers, such as inaccessible web sites, 
software incompatibility with adaptive devices, and voice automated systems 
inaccessible to adaptive telephones.  

Fortunately, a closer look at the design features of accessible technology reveal that 
the benefits extend beyond the community of people with disabilities. For example, 
accessible web design enables the very functionality needed for dynamic, web-based 
transactions - whether or not it is for business transactions, voting or long-distance 
learning. In addition, CD and videotapes can be archived through captioning and 
electronic textbooks can be made accessible. Even illiterate populations can access 
the web by listening to screen readers audibly reading the text on the web page. 

But perhaps the most significant benefit for the global economy is the fact that 
accessible design enables low technology to access high technology, thereby 
contributing to a stable, sustainable electronic infrastructure. People with slow 
modems and low bandwidth can access the electronic content of the web even if 
they do not have the state-of-the-art computer equipment. Likewise, people with 
personal digital assistants and cell phones can access the content of systems 
incorporating accessible design features.  

It is important to remember that accessibility is a quality, not a quantity. It is not 
finitely measurable. Thus, if a solution meets the principles, but does not utilize the 
standard, than it may still be accessible. The Technical Topics section outlines 
recommended standards for identifying whether E&IT provides comparable access. 
However - The principles represent the actual measure of accessibility. This is 
necessary in order to ensure that the requirements of accessibility are met fully, 
effectively, and efficiently--both now and in the future as the technological 
capability of E&IT evolves. Accessibility provisions should not only permit basic 
access, they should also allow people with disabilities to maximize the use of the 
abilities they have. 

Goals 
The Accessibility Architecture chapter documents the approach for the state to 
provide the maximum achievable access for its information. The goals of the 
Accessibility Architecture are to: 

• Ensure that all new Electronic and Information Technology produced, 
procured, or developed by agencies subject to IRMC policy will be 
accessible.  

• Provide a cross-organizational structure of interoperability with 
technologies that increase access.  

 33



S T A T E W I D E  T E C H N I C A L  A R C H I T E C T U R E  

• Provide access to data in formats that separate presentation from content.  
• Provide guidelines for accessible training and support.  
• Utilize national and international standards to achieve these goals.  
• The Accessibility Architecture chapter consists of the following technical 

topics:  
• Software Applications  
• Hardware Accessibility - To be added later  
• Training - To be added later  
• Support - To be added later 

 

Definitions 
Electronic and Information Technology 
The term "Electronic and Information Technology" (IT) shall mean Electronic and 
Information technology used by agencies under the jurisdiction of the IRMC that is 
used in carrying out Electronic and Information activities, involving any form of 
Electronic and Information, where: 
"Electronic and Information Technology" includes but is not limited to equipment, 
hardware, computers, software, firmware and similar procedures, systems, ancillary 
technologies, technologies which cause content to be active in any way, 
documentation, services (including support services) and related resources. It 
includes subsystems, interconnections, and interconnected systems. 
 
Electronic and Information Activities 
"Electronic and Information Activities" include, but are not limited to, the creation, 
translation, duplication, serving, acquisition, manipulation, storage, management, 
movement, control, display, switching, interchange, transmission, or reception of 
data or Information. Electronic and Information activities include delayed 
presentation activities such as Electronic and Information servers and messaging 
systems as well as synchronous, real-time communication activities. 
 
Electronic and Information 
Electronic and Information includes, but is not limited to, voice, graphics, text, 
dynamic content, and data structures of all types whether they are in electronic, 
visual, auditory, optical or any other form. 
 
Undue burden 
Undue Burden means significant difficulty or expense. In determining whether an 
action would impose an undue burden on the operation of the agency in question, 
factors to be considered include: 

• The nature and cost of the action needed to comply with this section; 

 34



S T A T E W I D E  T E C H N I C A L  A R C H I T E C T U R E  

• The overall size of the agency's program and resources, including the number 
of employees, number and type of facilities, and the size of the agency's 
budget; 

• The type of the agency's operation, including the composition and structure 
of the agency's work force; and  

• The impact of such action upon the resources and operation of the agency. 
 
Accessibility 
The capacity of an Electronic and Information Technology to enable any user to 
engage in Electronic and Information Activities. 
 
Accessible 
Electronic and Information Technology that enables any user to engage in 
Electronic and Information Activities. 
 

Accessibility Technology Components 
Software Application components are divided into three sections: Internally 
developed, Externally developed, and Internet (Web-based) applications and 
services. 

The following technology components are required for accessibility in software 
application components. 

 
Internet (Web-based) Applications and Services 
Usability of information technology becomes a serious issue for Americans with 
disabilities when they are excluded from the e-commerce and e-government due to 
the inaccessible design of information technology. Those who "can" and "cannot" 
are finding a growing number of access barriers, such as inaccessible web sites, 
software incompatibility with adaptive devices, and voice automated systems 
inaccessible to adaptive telephones. 

Fortunately, a closer look at the design features of accessible technology reveal that 
the benefits extend beyond the community of people with disabilities. For example, 
accessible web design enables the very functionality needed for dynamic, web-based 
transactions - whether or not it is for business transactions, voting or long-distance 
learning. Even illiterate populations can access the web by listening to screen 
readers audibly reading the text on the web page. 

But perhaps the most significant benefit for the global economy is the fact that 
accessible web design enables low technology to access high technology; thereby 
contributing to a stable, sustainable electronic infrastructure. People with slow 
modems and low bandwidth can access the electronic content of the web even if 
they do not have the state-of-the-art computer equipment. Likewise, people with 

 35



S T A T E W I D E  T E C H N I C A L  A R C H I T E C T U R E  

 36

personal digital assistants and cell phones can access the content of web sites 
incorporating accessible web design features. 

In October 1994, Tim Berners-Lee, inventor of the Web, founded the World Wide 
Web Consortium (W3C) at the Massachusetts Institute of Technology, Laboratory 
for Computer Science [MIT/LCS] in collaboration with CERN, where the Web 
originated, with support from DARPA and the European Commission. In April 
1995, the INRIA (Institut National de Recherche en Informatique et Automatique) 
became the first European W3C host, followed by Keio University of Japan 
(Shonan Fujisawa Campus) in Asia in 1996. W3C continues to pursue an 
international audience through its Offices worldwide. The W3C writes the standard 
for languages of the Web, including HTML, XML, Xforms, SmiL, and XHTML, 
along with architectural and interoperability standards. 

Utilization of the World Wide Web Consortium's (W3C) Web Content Accessibility 
Guidelines provides the best model to maximize usability. The recommended best 
practices in this section pertain to the implementation. 

 
Internally developed components and programmatic elements 
This technology component will be addressed in a future release of this document. 

 

Externally developed components and programmatic elements (including 
COTS) 
This technology component will be addressed in a future release of this document. 

 

 

 

 

  


	Mission Statement
	Technical Comparisons of Application Architectures
	
	Monolithic applications

	Two-tier client/server applications
	Three-tier client/server applications
	N-tier client/server applications
	Service-Oriented Application Architecture

	Application Technology Components
	Application
	Middleware
	Components
	Application Development Tools

	Designing Manageable Applications
	Manageable Application Technology Components
	Instrumented applications
	Agents
	Network and System Management (NSM) framework
	Management Information Base (MIB)
	Management Protocols
	Development Tools


	ComponentWare
	Reuse Methodology
	Techniques for Reusing Components
	Types of Services provided by Components
	Object-oriented Components
	ComponentWare Technology Components
	Components
	Application Program Interface (API)
	Interface Definition Language (IDL)
	Repository


	Accessibility
	Goals
	Definitions
	Electronic and Information Technology
	Electronic and Information Activities
	Electronic and Information
	Undue burden
	Accessibility
	Accessible

	Accessibility Technology Components
	Internet (Web-based) Applications and Services
	Internally developed components and programmatic elements
	Externally developed components and programmatic elements (including COTS)




